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Abstract. Term structures of default probabilities are omnipresent in credit risk modeling: time-dynamic credit
portfolio models, default times, and multi-year pricing models, they all need the time evolution of default proba-
bilities as a basic model input. Although people tend to believe that from an economic point of view the Markov
property as underlying model assumption is kind of questionable it seems to be common market practice to model
PD term structures via Markov chain techniques. In this paper we illustrate that the Markov assumption carries us
quite far if we allow for nonhomogeneous time behaviour of the Markov chain generating the PD term structures.
As a ‘proof of concept’ we calibrate a nonhomogeneous time-continuous Markov chain to observed one-year rating
migrations and multi-year default frequencies, hereby achieving convincing approximation quality.

1 Markov Chains in Credit Risk Modeling

The probability of default (PD) for a client is a fundamental risk parameter in credit risk man-
agement. It is common practice to assign to every rating grade in a bank’s masterscale a one-year
PD in line with regulatory requirements; see [1]. Table 1 shows an example for default frequencies
assigned to rating grades from Standard and Poor’s (S&P).

D
AAA 0.00%
AA 0.01%
A 0.04%
BBB 0.29%
BB 1.28%
B 6.24%
CCC 32.35%

Table 1: One-year default frequencies (D) assigned to S&P ratings; see [17], Table 9.

Moreover, credit risk modeling concepts like dependent default times, multi-year credit pricing,
and multi-horizon economic capital require more than just one-year PDs. For multi-year credit

risk modeling, banks need a whole term structure (p
(t)
R )t≥0 of (cumulative) PDs for every rating

grade R; see, e.g., [2] for an introduction to PD term structures and [3] for their application to
structured credit products.

Every bank has its own (proprietary) way to calibrate PD term structures1 to bank-internal and
external data. A look into the literature reveals that for the generation of PD term structures
various Markov chain approaches, often based on time-homogeneous chains, dominate current
market practice. A landmarking paper in this direction is the work by Jarrow, Lando, and
Turnbull [7]. Further research has been done by various authors, see, e.g., Kadam [8], Lando

[10], Sarfaraz et al. [12], Schuermann and Jafry [14, 15], Trueck and Oezturkmen [18],
just to mention a few examples. A new approach via Markov mixtures has been presented recently
by Frydman and Schuermann [5].

In Markov chain theory (see [11]) one distinguishes between time-discrete and time-continuous
chains. For instance, a time-discrete chain can be specified by a one-year migration or transition

1In the literature, PD term structures are sometimes called credit curves.
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matrix M generating multi-year transitions via powers (Mk)k≥1 of M . The corresponding (yearly)
time-discrete PD term structures are given by

p
(k)
R = (Mk)row(R),8 (k = 1, 2, 3, ...)

where row(R) denotes the row in the migration matrix M corresponding to rating R. Time-
continuous chains are specified by a Q-matrix2 Q such that exp(tQ) defines the migration matrix
for the time interval [0, t], where exp(·) denotes the matrix exponential. Time-continuous PD term
structures corresponding to a generator Q are given by

p
(t)
R = (exp(tQ))row(R),8 (t ≥ 0). (1)

Time-continuous Markov chains are superior to time-discrete Markov chains because they allow
for a consistent way to measure migrations and PDs for time horizons between yearly time grid
points. If for a discrete chain defined by a one-year migration matrix M we find a generator Q
such that

M = exp(Q), (2)

one says that the time-discrete chain can be embedded into a continuous-time chain. In general,
we can only expect to find approximative embeddings; see Israel, Rosenthal, and Wei [6],
Jarrow, Lando, and Turnbull [7], Kreinin and Sidelnikova [9], and [2], Chapter 6. In [3],
Section 2.3.1, we discuss an example of a generator Q almost perfectly fitted to a given one-year
migration matrix from S&P; see Appendix II.

The problem is that we find that a well-fitted generator nevertheless can generate model-implied PD

term structures significantly deviating from observed multi-year default frequencies. In this paper,
we address this problem, not by rejecting the Markov assumption but by dropping the homogeneity3

assumption w.r.t. time. Our results in Figure 2 show that in the context of PD term structure
calibration the Markov assumption indeed is not as wrong as people sometimes claim. In fact,
dropping the time-homogeneity assumption provides sufficient flexibility to calibrate a Markov
process to empirical migration and default frequencies with convincing quality. Therefore, we
claim that the anser to the question raised in the title of this paper is ‘to be Markov’, but ‘not

time-homogeneous’.

2 Calibration of a NHCTMC for PD term structures

In the sequel, we construct a NHCTMC, which we use for the generation of PD term structures.
In Appendix I we provide some comments on the stochastic rationale of the approach.

Starting point for our construction is the generator Q = (qij)1≤i,j≤8 from Table 4. But now we
do no longer assume that the transition rates qij are constant over time, leading to a HTCMC.
Instead, we replace the time-homogeneous generator Q leading to migration matrices exp(tQ) for
the time interval [0, t] by the time-dependent generator

Qt = Φ(t) ∗ Q (3)

where ‘∗’ denotes matrix multiplication and Φ(t) = (ϕij(t))1≤i,j≤8 is the diagonal matrix in R
8×8

with

ϕij(t) =

{

0 if i 6= j
ϕαi,βi

(t) if i = j
(4)

Because Φ(t) is a diagonal matrix, Qt is a Q-matrix (scaling rows of a Q-matrix gives a Q-matrix).
The functions ϕα,β w.r.t. parameters α and β are defined as follows. Set

ϕ̃α,β : [0,∞) → [0,∞), t 7→ ϕ̃α,β(t) = (1 − e−αt)tβ−1

2A square matrix Q is a Q-matrix/generator if
∑N

j=1
qij = 0 ∀ i, 0 ≤ −qii < ∞ ∀ i, and qij ≥ 0 ∀ i 6= j.

3A Markov chain is time-homogeneous if transition probabilities (the generator) do not depend on time.
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for nonnegative constants α and β. We want to normalize the functions in a way such that at time
t = 1 the functions take on the value 1. Therefore, we define ϕα,β as

ϕα,β : [0,∞) → [0,∞), t 7→ ϕα,β(t) =
ϕ̃α,β(t)

ϕ̃α,β(1)
.

Figure 1 illustrates the functions t 7→ tϕα,β(t). They have the following properties:

1. ϕα,β(1) = 1 (normalized at time t = 1; holds by construction) and

2. tϕα,β(t) is increasing in the time parameter t ≥ 0.

3. The first part of ϕ̃α,β , namely (1 − e−αt), is the distribution function of an exponentially

distributed random variable with intensity α; the second part of ϕ̃α,β , namely tβ , can be
considered4 as a convexity or concavity adjustment term, respectively.

Figure 1: Illustration of the functions ϕα,β for different α and β

Property 1 is necessary to guarantee consistency at time t = 1 between the given one-year migration
matrix M = exp(Q) and its nonhomogeneous modification exp(Q1). Property 2 is necessary for
keeping the direction of time (moving into the future and not into the past). Property 3 is meant
as a remark to make the point that the special form of the functions ϕα,β , while it has the flavour
of an ‘ad hoc’ parameterization, is not completely arbitrary but ‘close’ to well-known functions
used in probability.

Since the functional form of the time-dependent generators (Qt)t≥0 is fixed by Equation (4), the
generators Qt are solely determined by two vectors (α1, ..., α8) and (β1, ..., β8) in [0,∞)8. For any
chosen pair of parameter vectors, we can now generate a term structure of cumulative PDs by
calculating migration matrices Mt for the time period [0, t] via

Mt = exp(tQt) (t ≥ 0). (5)

The last step we have to make is to optimize5 (α1, ..., α8) and (β1, ..., β8) for the best fit of the term
structure generated by the default column of the migration matrices (5) to S&P’s [17] empirical
term structures of default frequencies. As distance measure for our optimization we use the mean-
squared distance. Table 2 and Figure 2 show the outcome of best-fitting α- and β-vectors as
well as the resulting (NHCTMC-implied) credit curves in comparison to the empirically observed
multi-year default frequencies from S&P.

Summarizing, we parameterized a Markov chain approach for calibrating model-implied PD term

structures in continuous time, which fit empirical observed default frequencies very well. Crucial

in our approach was the acceptance of a nonhomogeneous time evolution of the chain. The choice
of parameters involved a one-year migration matrix as well as observed default frequencies. It is
an interpolating not an extrapolating approach because the fit can only be exercised withing the
time window of observations6.

4Note that ϕα,β exhibits some simularity to the gamma distribution, frequently applied in the context of queuing
theory and reliability analysis.

5Note that α8 and β8 have no meaning and can be fixed at some arbitrary value.
6In contrast to homogeneous Markov chains where extrapolation can be done quite naturally.

3



Figure 2: PD term structures based on a NHCTMC approach
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Table 2: Optimal choices for α- and β-vectors

Appendix I: Stochastic rationale of the NHCTMC approach

In this appendix, we briefly comment on the stochastic rationale of our approach. For the sake of
a more convenient notation, let us denote by Ψ(t) the diagonal matrix with diagonal elements

ψii(t) = tϕαi,βi
(t) (i = 1, ..., 8; t ≥ 0).

The transition matrix Mt in (5) for the time period [0, t] can then be written as

Mt = exp(Ψ(t) ∗ Q) (t ≥ 0). (6)

Writing the matrix exponential as a power series and using the typical Markov kernel notation
P0,t = Mt, term-by-term differentiation yields

∂

∂t
P0,t =

∞
∑

k=0

∂

∂t

(Ψ(t) ∗ Q)k

k!

=
∞
∑

k=1

( ∂

∂t
Ψ(t) ∗ Q

)

∗
(Ψ(t) ∗ Q)(k−1)

(k − 1)!

=
( ∂

∂t
Ψ(t) ∗ Q

)

∗ P0,t. (7)

Because Ψ(t) is a diagonal matrix, (∂/∂t)Ψ(t) is the diagonal matrix with entries ψ′
ii(t). Therefore,

the matrix (∂/∂t)Ψ(t) ∗ Q is a Q-matrix, arguing in the same way as above where we said that
Ψ(t) ∗ Q is a Q-matrix and taking into account that ψ′

ii(t) ≥ 0 at all times7 t. As a consequence
of general Markov theory (see Ethier and Kurtz [4], Theorem 7.3 in Chapter 4, Lando and
Skodeberg [10], and Schoenbucher [13]), Equation (7) is part of the forward equation of a time-
inhomogenous Markov chain (Xt)t≥0 with state space {1, 2, ..., 8} corresponding to a semigroup

{Ps,t | 0 ≤ s ≤ t} satisfying the Kolmogorov backward and forward equations associated with the
family {(∂/∂t)Ψ(t)∗Q | t ≥ 0} defining the infinitesimal generator of the Markov process. Equation
(7) shows that the NHCTMC (Xt)t≥0 induces the PD term structures illustrated in Figure 2 via
the default column of kernel-based transition matrices P0,t = Mt = exp(Ψ(t) ∗ Q).

Appendix II: Example of a generator well fitted to migrations

but poorly fitting observed default frequencies

The following example is taken from [3], Section 2.3.1. We start with the adjusted8 average one-year
migration matrix M = (mij)i,j=1,...,8 shown in Table 3, based on Table 9 in [17].

Table 4 shows the calibration of a generator (Q-matrix) Q based on the log-expansion of M and a
so-called diagonal adjustment; see [9]. The approximation of the original matrix M by exp(Q) is

7We have (1 − exp(−α))ψ′

ii(t) = α exp(−αt)tβ + (1 − exp(−αt))βtβ−1 ≥ 0 for all t ≥ 0.
8Rows are normalized in order to get a stochastic matrix and the PD for AAA is set equal to 0.2 bps, based on

a linear regression of PDs on a logarithmic scale.
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Table 3: Modified average one-year migration matrix M based on S&P data [17]

Table 4: Approximative generator Q for M

very much acceptable, based on the following small approximation error:

‖M − exp(Q)‖2 =

√

√

√

√

8
∑

i,j=1

(mij − (exp(Q))ij)2 ≈ 0.00023.

We can generate PD term structures based on the continuous time-homogeneous Markov chain
generated by Q via

p
(t)
R = (exp(tQ))row(R),8 (t ≥ 0)

as in Equation (1) in the introduction. Figure 3 compares the result of this calculation with
empirically observed default frequencies, also taken from the S&P report [17]. The picture we get
is quite disappointing: despite the good fit of the Q-matrix exponential to M , empirical default
frequencies are not reflected by the model-implied PD term structures derived from the chosen time-
homogeneous Markov chain approach. However, Figure 2 shows that the picture can completely
change to the positive if we drop the time-homogeneity assumption.
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